SPE 118808 Well Placement Optimization Using a Genetic Algorithm with Nonlinear Constraints

نویسندگان

  • Alexandre A. Emerick
  • Eugênio Silva
  • Bruno Messer
  • Luciana F. Almeida
  • Dilza Szwarcman
  • Marco Aurélio C. Pacheco
چکیده

Well placement optimization is a very challenging problem due to the large number of decision variables involved and the nonlinearity of the reservoir response as well as of the well placement constraints. Over the years, a lot of research has been done on this problem, most of which using optimization routines coupled to reservoir simulation models. Despite all this research, there is still a lack of robust computer-aided optimization tools ready to be applied by asset teams in real field development projects. This paper describes the implementation of a tool, based on a Genetic Algorithm, for the simultaneous optimization of number, location and trajectory of producer and injector wells. The developed software is the result of a two-year project focused on a robust implementation of a computer-aided optimization tool to deal with realistic well placement problems with arbitrary well trajectories, complex model grids and linear and nonlinear constraints. The developed optimization tool uses a commercial reservoir simulator as the evaluation function without using proxies to substitute the full numerical model. Due to the large size of the problem, in some cases involving more than 100 decision variables, the optimization process may require thousands of reservoir simulations. Such a task has become feasible through a distributed computing environment running multiple simulations at the same time. The implementation uses a technique called Genocop III – Genetic Algorithm for Numerical Optimization of Constrained Problems – to deal with well placement constraints. Such constraints include grid size, maximum length of wells, minimum distance between wells, inactive grid cells and user-defined regions of the model, with non-uniform shape, where the optimization routine is not supposed to place wells. The optimization process was applied to three full-field reservoir models based on real cases. It increased the net present values and the oil recovery factors obtained by well placement scenarios previously proposed by reservoir engineers. The process was also applied to a synthetic case, based on outcrop data, to analyze the impact of using reservoir quality maps to generate an initial well placement scenario for the optimization routine without using an engineer-defined configuration. Introduction The definition of a well placement is a key aspect with major impact in a field development project. In this sense, the use of reservoir simulation allows the engineer to evaluate different placement scenarios. However, the current industry practice is still, in most cases, a manual procedure of trial and error that requires a lot of experience and knowledge from the engineers involved in the project. Considering that, the development of well placement optimization tools which can automate this process is a high desirable goal. Well placement optimization is a very challenging problem due to the large number of decision variables involved and the nonlinearity of the reservoir response as well as of the well placement constraints. Over the years, a lot of research has been done on this problem, most of which using optimization routines coupled to reservoir simulation and economical models. In 1995, Beckner and Song applied a Simulated Annealing algorithm to optimize the location and scheduling of 12 wells with fixed orientation and length. In 1997, Bittencourt and Horner applied a Genetic Algorithm (GA) hybridized with Polytope and Tabu Search methods to optimize the location of 33 vertical and horizontal wells, including wells, producers and injectors. In 1998, Pan and Horner investigated the use of multivariate interpolation algorithms, Least Squares and Kriging, as proxies to reservoir simulations for optimization problems including well placement. In 1999, Cruz et al. introduced the

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RESOLUTION OF NONLINEAR OPTIMIZATION PROBLEMS SUBJECT TO BIPOLAR MAX-MIN FUZZY RELATION EQUATION CONSTRAINTS USING GENETIC ALGORITHM

This paper studies the nonlinear optimization problems subject to bipolar max-min fuzzy relation equation constraints. The feasible solution set of the problems is non-convex, in a general case. Therefore, conventional nonlinear optimization methods cannot be ideal for resolution of such problems. Hence, a Genetic Algorithm (GA) is proposed to find their optimal solution. This algorithm uses th...

متن کامل

Well Placement Optimization Using Differential Evolution Algorithm

Determining the optimal location of wells with the aid of an automated search algorithm is a significant and difficult step in the reservoir development process. It is a computationally intensive task due to the large number of simulation runs required. Therefore,the key issue to such automatic optimization is development of algorithms that can find acceptable solutions with a minimum numbe...

متن کامل

Optimal Placement of Remote Control Switches in Radial Distribution Network for Reliability Improvement using Particle Swarm Optimization with Sine Cosine Acceleration Coefficients

Abstract: One of the equipment that can help improve distribution system status today and reduce the cost of fault time is remote control switches (RCS). Finding the optimal location and number of these switches in the distribution system can be modeled with various objective functions as a nonlinear optimization problem to improve system reliability and cost. In this article, a particle swarm ...

متن کامل

Optimal Placement and Sizing of DGs and Shunt Capacitor Banks Simultaneously in Distribution Networks using Particle Swarm Optimization Algorithm Based on Adaptive Learning Strategy

Abstract: Optimization of DG and capacitors is a nonlinear objective optimization problem with equal and unequal constraints, and the efficiency of meta-heuristic methods for solving optimization problems has been proven to any degree of complex it. As the population grows and then electricity consumption increases, the need for generation increases, which further reduces voltage, increases los...

متن کامل

OPTIMUM PLACEMENT AND PROPERTIES OF TUNED MASS DAMPERS USING HYBRID GENETIC ALGORITHMS

Tuned mass dampers (TMDs) systems are one of the vibration controlled devices used to reduce the response of buildings subject to lateral loadings such as wind and earthquake loadings. Although TMDs system has received much attention from researchers due to their simplicity, the optimization of properties and placement of TMDs is a challenging task. Most research studies consider optimization o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008